Accelerated Solution of High Order Non-linear ODEs using Chebyshev Spectral Method Comparing with Adomian Decomposition Method
نویسنده
چکیده
In this article, an accurate Chebyshev spectral method for solving high order non-linear ODEs is presented. Properties of the Chebyshev polynomials are utilized to reduce the computation of the problem to a set of algebraic equations. Some examples are given to verify and illustrate the efficiency and simplicity of the method. We compared our numerical results against the Adomian decomposition method (ADM). Special attention is given to study the convergence analysis of ADM. Numerical results were obtained from these two methods show that the proposed techniques are in excellent conformance in most cases. Also, from the presented examples, we found that the proposed method can be applied to wide class of high order non-linear ODEs.
منابع مشابه
Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...
متن کاملAdomian decomposition method for solution of nonlinear differential algebraic equations
In [M.M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comput., in press] an efficient modification of the Adomian decomposition method was presented by using Chebyshev polynomials. Also, in [M.M. Hosseini, Adomian decomposition method for solution of differential algebraic equations, J. Comput. Appl. Math., in press] solution of linear differential algebraic eq...
متن کاملNumerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact solution
The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کاملSolving linear and nonlinear optimal control problem using modified adomian decomposition method
First Riccati equation with matrix variable coefficients, arising in optimal and robust control approach, is considered. An analytical approximation of the solution of nonlinear differential Riccati equation is investigated using the Adomian decomposition method. An application in optimal control is presented. The solution in different order of approximations and different methods of approximat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012